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Abstract
In this paper, we use the ‘surface currents’ model and the nonrelativistic
equation of motion of the particle to investigate the harmonic features in the
nonrelativistic intensity regime. We also make great efforts to study the effect
of Lorentz force in this regime. Our results show that, generally speaking, the
Lorentz force effects are quite small. However, in some particular cases, such
as the generation of high-order harmonics and large incident angle, the Lorentz
force effects are not negligible.

1. Introduction

There has been continued interest in the generation of harmonics from solid targets using
ultrashort-pulse lasers during the past 20 years. Many theoretical and experimental studies [1–
18] have been reported. At relativistic intensities, i.e. Iλ2 exceeding 1018 W cm−2 µm2

(I is the laser intensity, λ is the laser wavelength), very high order harmonics were observed
in many experiments [1–3]. One of the most impressive experiments was performed by
Norreys et al [2]. In this experiment, harmonics up to 68th were observed at an intensity
of Iλ2 = 1019 W cm−2 µm2. A number of features in the measured spectra were in good
agreement with the results from the one-dimensional (1D) particle-in-cell (PIC) simulations of
Gibbon [4]. Several theoretical models for the relativistic intensity regime were also proposed
to investigate the generation of harmonics in reflection from solid targets. Lichters et al [5]
developed a ‘moving mirror’ model which could qualitatively explain the mechanism of the
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harmonic generation for arbitrary incident angles and polarization. In this model, harmonic
generation was interpreted as an anharmonic distortion of the laser field upon reflection from
a rapidly oscillating surface of the solid target. For small incident angles, Lichters et al found
excellent agreement with PIC simulations after adjusting the maximum oscillation. For large
angles, agreement was not as good. Recently, we extended the ‘relativistic surface currents’
model [6, 7] to investigate the harmonic generation during the interaction of a p-polarized
obliquely incident ultrashort-pulse ultra-intense laser with solid targets. We found that up to
70th harmonics were generated with conversion efficiencies exceeding 10−6 which was very
close to the result from Norreys et al’s experiment and Gibbon’s PIC simulations.

When Iλ2 � 1016 W cm−2 µm2, the processes involved in the harmonic generation have
nonrelativistic characteristics. We call this regime the nonrelativistic regime. Many experi-
ments have been reported in this regime [8, 11–15]. All these experiments showed that there
were some different features of harmonics in this regime. First of all, only low-order harmonics
can be observed in these experiments. Secondly, all the harmonics prefer to propagate into the
specular reflection direction [8, 14, 15]. Thirdly, the harmonic conversion efficiencies depend
on the laser polarization. Furthermore, a recent experiment [8] showed that the nth-harmonic
intensity can be represented by a power law of the In ∝ Iωβ , where β is called the intensity
scaling exponent, and found that for an obliquely incident p-polarized laser beam, second,
third and fourth harmonics had intensity scaling exponents of 1.5, 1.8 and 3.8 respectively.

In order to explore the physical mechanism of the harmonic generation and explain the
experimental results for the processes in the nonrelativistic intensity regime, in this paper, we
use the ‘surface currents’ model and the nonrelativistic equation of motion of the particle to
investigate the harmonic features in the nonrelativistic regime. We focus our discussion on
the effects of the Lorentz force and demonstrate that the Lorentz force influences the results
of the harmonic generation such as the conversion efficiency and the optimum angle. We also
discuss the cases where the ‘Lorentz force’ effect might be significant. Finally, some other
possible effects that might improve the theoretical results are discussed.

2. The ‘surface currents’ model

Ultrashort, ultra-intense laser pulses focused in gases or on solids can rapidly ionize the targeted
medium and plasmas are thereby produced. In underdense plasmas, where the electron density
ne is below the critical density nc for an electromagnetic wave with frequency ω0 (where

nc = meω
2
0c2

4πe2 ), the efficiency of the harmonic generation is reduced by the collective fluid
response to the particle orbits, and by dephasing of the harmonics relative to the pump [18]. In
the opposite case where the solid density plasma (overdense plasma) is produced with ne � nc,
the incident laser is almost totally reflected from the vacuum–plasma interface. Harmonics
can be generated in the reflected light by the nonlinear mixing of transverse and longitudinal
oscillations near the critical surface. Therefore, an effective surface current model can be
constructed here.

We assume the vacuum–plasma interface as an ideal conductor. Then a surface current and
a surface charge, which act as the sources for harmonics, can be obtained from the boundary
conditions of the vacuum–ideal conductor interface that can be written as

�n · �E = 4πσs (1)

�n × �H = 4π

c
�js (2)

where �n is the unit vector of the normal direction directed from the plasma to the vacuum,
and �E and �H are the total electric and magnetic fields (both incident and reflected laser beams
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are included) at the side of vacuum, respectively. For a p-polarized obliquely incident laser,
they are

�H = −2E0 exp[i(kx x + kzz − ωt)] �ey (3)

�E = 2E0 exp[i(kx x + kzz − ωt)] sin α �ez (4)

where α is the incident angle. For convenience, we adopt the plane wave and replace �js and
σs with two effective currents �j1 and �j2 respectively. The surface current can be written as a
bulk current through the delta function δ(z):

�j1 = �jsδ(z) (5)

and since the surface charge varies with time t , it will contribute an effective current �j2 due to
the equation of continuity:

∇ · �j2 +
∂

∂ t
σsδ(z) = 0 (6)

or

�j2 · �n = ∂

∂ t
σs . (7)

We also assume uniform irradiance within the focal spot, whose radius a is much larger
than the laser wavelength. Thus, we have �j(�x, t) = �j(x, t). Finally, we can obtain

�j1 = c

2π
E0 exp[i(kx x − ωt)]δ(z) �ex (8)

�j2 = iω

2π
E0 exp[i(kx x − ωt)] sin α �ez . (9)

The generation of harmonics can be understood in terms of the nonlinear mixing of these two
currents.

The ‘surface currents’ model was first proposed by Wei Yu et al [6] in order to investigate
the harmonic generation for a normally incident ultrashort-pulse ultra-intense laser. It is
helpful to recall its main ideas. In this model, the radiated power per unit solid angle of the
nth harmonic from a current source �j consisting of, say, electrons moving relativistically in
the laser field, can be expressed in general as

dPn

d	
= n2ω2

0

(2πc)3

∣∣∣∣
∫

d3x
∫ 2π

0
dτ �υ × (�υ × �j) exp[in(τ − k0 �υ · ( �� + �x))]

∣∣∣∣
2

(10)

where �j is the surface current, �υ = (1, θ, ϕ) is the observation direction and τ = ω0t , �x is
the coordinate vector of the source at τ = 0. The �� is its displacement and can be written as
�� = ∫ ωt

0 �v(�x, τ ′) dτ ′, where �v is the single-electron quiver velocity in the incident laser field.
Therefore �x + �� is the instantaneous location of the source. Compared with some previous
models [9, 10], this model takes into account the coordinate vector of the current source as
well as its displacement in the exponent phase factor which, as we will show later, contributes
a factor that can determine the directionality of the harmonics.

�v can be derived from the equation of motion of the electron in the electromagnetic field.
Because we investigate the nonrelativistic intensity regime, we can make some approximation.
Since v/c � 1 is satisfied in this regime, we can treat the Lorentz force �FLor = − e

c �v × �B as
a perturbation and expand the displacement of the current source to the order of q2

�� = q

k
cos(kx x − ωt)(− cos α �ex + sin α �ez) +

q2

8k
sin 2(kx x − ωt)(sin α �ex + cos α �ez) (11)

where q = eE0
mωc = 0.85 × 10−9

√
Iλ2 is the laser strength parameter (I = cE2

0
8π

is in units of
W cm−2, λ is in units of µm).
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In the cylindrical coordinate system, equation (10) can be expressed as

dPn

d	
= n2ω2

0

(2πc)3

∣∣∣∣
∫ a

0
ρ dρ

∫ 2π

0
dφ exp[−inkρ sin θ cos(φ − ϕ)]

∫ ε

0
dz exp[−ink cos θz]

×
∫ 2π

0
dτ �ν × (�ν × �j) exp[in(τ − k�ν · ��)]

∣∣∣∣
2

(12)

where a is the focal radius of the laser beam. Therefore, we can solve the integral in
equation (12) to yield

dPn

d	
= ca2 E2

0

2π

[
J1(nkaξ)

ξ

]2

Yn

[
cos2 θ + sin2 θ sin2 ϕ

+ 4 sin2

(
1

2
nk cos θε

)(
1

n2
sin2 α tan2 θ − 1

n
sin α sin θ cos ϕ

)]
(13)

where

Yn =
∣∣∣∣ 1

2π

∫ 2π

0
dτ exp[i(n − 1)τ + inQ cos τ + inQ′ sin 2τ

∣∣∣∣
2

=
∣∣∣∣

∑
µ+2υ=1−n

iµ Jµ(nQ)Jυ(nQ′)
∣∣∣∣
2

=
∣∣∣∣

∑
µ+2ν=n−1

Jµ(nQ)Jν(nQ′)
∣∣∣∣
2

(14)

ξ = (sin2 θ + sin2 α − 2 sin θ sin α cos ϕ)1/2 (15)

Q = q(sin θ cos ϕ cos α − cos θ sin α) (16)

Q′ = q2

8
(sin α sin θ cos ϕ + cos θ cos ϕ). (17)

We know that the electromagnetic wave can only propagate into a layer near the surface of
the metal, which is called the conductor skin effect. Here ε denotes the depth of the layer and
we can estimate it with the skin depth, which can be expressed as δ = c√

2πµωσ
[20]. We figure

out that δ is several nanometres, thus kε � 1 is satisfied in the experiments we investigate.
Therefore, we can neglect the last term in the square brackets of equation (13) for the low-order
harmonics. We can then rewrite equation (13) as

dPn

d	
= ca2 E2

0

2π

[
J1(nkaξ)

ξ

]2

Yn(cos2 θ + sin2 θ sin2 ϕ). (18)

Harmonic emission can also be considered as nonlinear scattering of light and the scattering
efficiency of the nth harmonic can thereby be expressed as follows [6]:

ηn = 3cσT

2πe2ω2a2q2

∫
dPn

d	
d	 (19)

where σT is the Thompson cross section.

3. Some results

First of all we consider the angular distribution of the harmonic radiation. Instead of making the
assumption of a point-like interaction region as in many previous works [9, 10], in this model
we take into account the finite size of the focal spot, which will contribute a factor [ J1(nkaξ)

ξ
]2

in our expression. The factor has often appeared in optics in connection to diffraction from a
circular hole. For ka � 1, we can see that [ J1(nkaξ)

ξ
]2 peaks sharply at ξ = 0 and falls rapidly
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Figure 2. The angular distribution of harmonics for q = 0.001. The value of dPn
d	

has been divided
by the factor Ia2; other parameters are the same as in figure 1.

to zero at other values, as is shown in figure 1 for n = 2 and ka = 10. In the region that can
be observed (θ ∈ [ π

2 , π], ϕ ∈ [0, 2π)), ξ can take the value of zero only when θ = π − α

and ϕ = 0, which just represents the specular reflection direction. So we have demonstrated
that the harmonic radiation occurs predominantly in the specular direction. We can also see
clearly that dPn

d	
peaks at θ = π − θ and ϕ = 0 for n = 2 and ka = 10 in figure 2. In the real
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experiments, ka will achieve a much higher value (about 100), which means that the peak will
be sharper than is shown in figure 2. We conclude that the interaction of a shorter-wavelength
laser with solid targets can produce more directional harmonic radiation.

Since almost all the energy of the harmonics is focused into the direction of specular
reflection, for convenience we can substitute the differential value of the conversion efficiency
in the direction of specular reflection for the integral form (19). A coefficient of proportionality
is required in order to estimate the conversion efficiency. Using the similar method described
by Ganeev et al [8], we obtain the conversion efficiency in a small solid angle �	 as

ηn = 4�	

[
J1(nkaξ)

ξ

]2

Yn(cos2 θ + sin2 θ sin2 ϕ) (20)

where �	 = a2

r2 . a is the focus radius of the incident laser and r is the distance between incident
spot on the solid surface and the spectrometer. In order to obtain the intensity scaling exponent
for the conversion efficiency of the harmonic generation, we need to discuss Yn in (14) more
carefully. Usually the numerical method must be used in order to obtain an accurate value of
Yn . However, in the case of the nonrelativistic intensity regime, we can easily find that q � 1
and nq, nq2 � 1 for the low-order harmonics are satisfied. From the feature of the Bessel
function we know that terms with µ or υ of high absolute value in (14) can be neglected.
Therefore, we can obtain Y2 = J 2

1 (2Q)J 2
0 (2Q′), Y3 = |J2(3Q)J0(3Q′) + J0(3Q)J1(3Q′)|2

and Y4 = |J3(4Q)J0(4Q′) + J1(4Q)J1(4Q′)|2, for example. For x � 1, Jn(x) is proportional
to xn, thus we find that the efficiency ηn is proportional to q2(n−1) and is also proportional
to I n−1. Therefore we get intensity scaling exponents of 1–3 for second, third and fourth
harmonics, respectively. Ganeev et al’s experiment showed intensity scaling exponents of 1.5,
1.8, and 3.8 respectively. The discrepancies of our theoretical results and the experiments are
negligible for the third harmonic, but cannot be neglected for the second and fourth harmonics.
However, as we check Ganeev et al’s [8] experimental results in the figures 2–4, we find that
deviations of experimental spots from the fitting lines are quite large for the second and fourth
harmonics, which can contribute a lot to the discrepancies of the experiment and our theory.
The result also implies that the high-intensity laser has to be used in order to enhance the
efficiencies of harmonic generation and obtain high-order harmonics.

Figure 3 shows the conversion efficiency of harmonic generation versus the harmonic
number for I = 1015 W cm−2, λ = 1.053 µm and α = 67.5◦ which are the same as in Ganeev
et al’s [8] experiment. It can be seen that our results are quite close to the data of Ganeev’s
experiment, except for the fourth harmonic.

Now we investigate the influence of incident angle of the laser on the harmonic emission.
Figure 4 shows the conversion efficiency of second harmonics versus the incident angle for
I = 1015 W cm−2, λ = 1.053 µm. The peak conversion occurs for an incident angle of 34.7◦.

Finally, let us discuss the influence of the intensity of the incident laser on the harmonic
emission. Conversion efficiency versus harmonic number for different values of q is shown in
figure 5. We can see that the conversion efficiency falls rapidly as harmonic number increases
for q � 1 which just represents the nonrelativistic intensity regime. For q ∼ 1, efficiency
falls more slowly. This demonstrates that the ultra-intense laser is indispensable in order to
obtain high-order harmonics.

4. The effect of Lorentz force in the nonrelativistic intensity regime

We now discuss the effects of Lorentz force in the nonrelativistic intensity regime. The Lorentz
force is the main cause of nonlinearity of the orbit of a single electron in an electromagnetic
plane-wave. In previous works, it is sometimes suggested that the Lorentz force can be
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Figure 3. Conversion efficiency versus the harmonic number for I = 1015 W cm−2, λ = 1.053 µm
and α = 67.5◦ with �	 = 3.0 × 10−9. Triangles: experimental results [8]. Squares: results with
consideration of Lorentz force. Circles: results without consideration of Lorentz force.

neglected in the nonrelativistic regime due to the small factor v
c . The electron will make the

harmonic oscillation in the direction of electric field of the electromagnetic wave if we do not
take into account the Lorentz force.

In (11), though it was from the first perturbation of the Lorentz force term, the orbit
property of a single electron is kept. In order to show this result, let us rewrite (11) as

�r = q

k
cos(kx x − ωt)(− cos α �ex + sin α �ez) +

q2

8k
sin 2(kx x − ωt)(sin α �ex + cos α �ez). (21)

In the coordinate system where �e′
x = sin α �ex + cos α �ez , �e′

y = − cos α �ex + sin α �ez , the orbit can
be written as

16k2x ′2 = k2 y ′2(q2 − k2 y ′2). (22)

The orbits of a single electron in the electromagnetic field of linearly polarized light are depicted
graphically in figure 6. The well known figure-of-eight was obtained as the same result in many
previous works (the definition of q may have a different factor) [9, 10].

When we checked the expression of Yn in (14), we found that though the term containing
Q′ (the modification after taking into account Lorentz force) is smaller than the term containing
Q in the nonrelativistic intensity regime, it might influence the final results since it contributes
an exponent factor in the integral of (14). In order to show the importance of the Lorentz force
in the high-harmonics generation, we give some numerical results.

Figure 7 shows the ratio ηL
n /ηnoL

n versus harmonic number. All the parameters are the
same as in Ganeev et al’s experiment [8]. The difference between the two results can be
neglected only for the second harmonic. As the harmonic number increases, the difference
becomes larger. We can conclude that the Lorentz force plays an important role, especially in
the generation of high-order harmonics, even in the nonrelativistic regime.
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Figure 4. Conversion efficiency versus the incidence angle for the second harmonics; other
parameters are the same as Ganeev’s [8].

Now we demonstrate that the ratio ηL
n /ηnoL

n has no dependency on the intensity of
the incident laser in the nonrelativistic regime. As we discuss above, the efficiency ηL

n is
proportional to q2(n−1) and is also proportional to I n−1. When we neglect the effect of Lorentz
force, the expression of Yn changes into J 2

n−1(nQ), which means that the efficiency ηnoL
n is

also proportional to q2(n−1) and I n−1. Therefore the ratio will remain constant in a very wide
nonrelativistic intensity regime.

Figure 8 shows the ratio ηL
n /ηnoL

n versus incident angle α for the second, third and fourth
harmonics. The Lorentz force effect can be neglected only for the second harmonics and
becomes more obvious for higher-order harmonics. For harmonic number equal to or larger
than 3, and especially for large incident angle, the Lorentz force plays an important role in the
generation of harmonics. We can see from figure 8 that the ratio becomes 1 when the incident
angle α is 45◦, which means the Lorentz force has no influence on the harmonic emission
for this angle. This result can be obtained from the expression of Q′ in (14). In the specular
direction, Q′ = − q2

8 cos(2α). For α = 45◦, Q′ = 0. Therefore the Lorentz force has no
effect on the harmonic generation. For α > 45◦, Q′ > 0 and for α < 45◦, Q′ < 0. From the
expression of Yn , we find that positive Q′ can increase the conversion efficiency while negative
Q′ can decrease the conversion.

Finally, in order to investigate the influence of Lorentz force on the optimum incident
angle, we show the conversion efficiency versus the incident angle α for the third and fourth
harmonics in figures 9 and 10. For the third harmonics, the conversion efficiency peaks at
40.6◦ (not 39.2◦) after taking into account the Lorenz force. For the fourth harmonics, the
conversion efficiency peaks at 45.1◦ (not 40.6◦). The discrepancy is obvious for high-order
harmonics. This result may provide a practical method to test the Lorentz force effect in the
nonrelativistic regime.
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Figure 5. Conversion efficiency versus harmonic number for q of different values; other parameters
are the same as Ganeev’s [8].
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5. Further discussion and summary

In this paper, we have concentrated on the effects of the Lorentz force on harmonic generation.
In doing so, we have omitted a variety of other physical processes which are equally important
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in the generation of harmonics. It is often suggested that the harmonics are generated from the
harmonic content of the electron density ne and the nonlinear orbit of the single electron in a
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Figure 9. Conversion efficiency versus the incidence angle for the third harmonics; other parameters
are the same as Ganeev’s [8]; solid curve: efficiency with Lorentz force, dashed curve: efficiency
without Lorentz force.

strong electromagnetic plane-wave. In our model, the latter was included using a perturbation
expansion of the displacement. However, the details of the electron density distribution were
neglected, which might be responsible for the discrepancies displayed in figure 3, for harmonic
number equal to or larger than 4. A detailed discussion concerning this effect can be found
in [19], which gives a nonlinear current j2ω at the second-harmonic frequency

j2ω ∝
[

ω2
p

4ω2
0

∇(E · E) +
ω2

p

ω2
0 − ω2

p

(E · ∇ ln ne)E

]
(23)

where ωp = (4πnee/m)1/2 is the plasma resonance frequency. This current should act as a
source for the harmonic generation.

In conclusion, in this paper we use the ‘surface currents’ model and expand the electron
displacement in power series and calculate the differential scattering cross-sections for the
harmonics. Our results show that harmonic generation occurs preferentially in the specular
direction. We find an intensity scaling exponent of n − 1 for the nth harmonics. We also
estimate the conversion efficiencies and make some comparisons with data of the experiments
by Ganeev et al. Almost all these results are in good agreement with the experiments. Though
our discussion has focused on the nonrelativistic regime, our results imply that the ultra-intense
and short-wavelength laser is indispensable in order to obtain high-order and highly directional
harmonics.

We also study the effect of Lorentz force in the nonrelativistic regime. We obtain the
orbit of a single electron in strong electromagnetic plane-wave (figure-of-eight) in a more
straightforward and simpler way. We explore many factors that might influence the effect of
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Figure 10. Conversion efficiency versus incidence angle for the fourth harmonics; other parameters
are the same as Ganeev’s [8]; solid curve: efficiency with Lorentz force, dashed curve: efficiency
without Lorentz force.

Lorentz force such as the harmonic number, the laser intensity and the incident angle. Our
results show that, generally speaking, the Lorentz force effects are negligibly small. However,
in some particular cases, such as the generation of high-order harmonics and the large incident
angle, the Lorentz force effects are not negligible.
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